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Generating credible climate change and extremes projections re-
mains a high-priority challenge, especially since recent observed
emissions are above the worst-case scenario. Bias and uncertainty
analyses of ensemble simulations from a global earth systems
model show increased warming and more intense heat waves
combined with greater uncertainty and large regional variability in
the 21st century. Global warming trends are statistically validated
across ensembles and investigated at regional scales. Observed heat
wave intensities in the current decade are larger than worst-case
projections. Model projections are relatively insensitive to initial
conditions, while uncertainty bounds obtained by comparison with
recent observations are wider than ensemble ranges. Increased
trends in temperature and heat waves, concurrent with larger un-
certainty and variability, suggest greater urgency and complexity of
adaptation or mitigation decisions.

climate change � extremes � regional analysis

Recent observations of global-average emissions (1, 2) show
higher trajectories than the worst-case A1FI scenario re-

ported in IPCC AR4 (3). Average A1FI temperatures (1, 4)
trend higher than the best-case B1 as well as the relatively
worse-case A2 scenario (5). Model simulations, validated with
observations, have pointed to more intense, longer lasting, and
more frequent heat waves in the 21st century (6). However, a
rigorous statistical validation of the increased global warming
and heat waves, followed by an investigation of the trends at
regional scales, is required for decision-makers and end-users.
Larger trends in warming and extremes suggest a greater urgency
to develop adaptation and mitigation strategies (7, 8). On the
other hand, a comprehensive assessment of the uncertainties and
geographical variability provide an understanding of the tradeoff
space for risk-informed decisions (9), which refers to different
tactical or strategic options that may be available to a decision-
maker for climate change adaptation and mitigation. Uncer-
tainty of climate model projections has been quantified (10-14)
either by comparing model hindcasts with observations or by
comparing an ensemble of simulations. However, hindcasts
validate models after the fact and hence risk underestimating
predictive ability (15), while ensembles may only capture specific
aspects of the variability. Hence the reliable and timely analysis
of evolving climate model projections, extremes, and uncertainty
remains a challenge (16-21).

Results
Statistically Higher Warming Trends. First, we show that the global-
average temperatures from the middle to end of the 21st century
are likely to be higher than previously believed (3). This is
suggested by the fact that recent observed emissions trend
toward or above A1FI assumptions (1, 2). The fact that observed
emissions are at or above the level of A1FI, or any given scenario,

in the current decade may not be a compelling reason to support
conclusions about temperature in the late 21st century, as the
trends could change considerably. However, when recent obser-
vations match or exceed the higher end of the emissions sce-
narios, then the latter cannot be ruled out as an implausible
scenario. Moreover, we are not aware of any studies that clearly
show that the higher temperature trends based on A1FI are
statistically significant compared to other scenarios like A2 or
B1. Here, A1FI simulations from CCSM 3.0 (22) are being
evaluated. The assumptions inherent in the design of the A1FI
and the A2 scenarios cause the A1FI emissions trajectories to be
higher than A2 in the latter half of the 21st century; but while
A2 continues to increase thereafter, A1FI begins to stabilize.
The two scenarios converge toward the end of the century
because of competing factors. Specifically, the A1FI envisions a
more fossil-fuel intensive situation but also a more convergent
world as compared to A2 (see reference 5 for details).

We performed a t-test (� � 0.05) to determine if the mean
A1FI outputs are higher than the mean A2 and B1 outputs at
significant levels. Fig. 1 shows the global-average temperature
projections, along with confidence bounds (three standard de-
viations on either side) at each decade. Our results (details in SI)
show that both A1FI and A2 temperature projections are
statistically distinguishable from the B1 scenario from 2040–
2100 at 95% confidence; A1FI projections are statistically dis-
tinguishable from A2 from 2060–2090, but become indistin-
guishable again in 2100. During 2000–2007, when comparisons
with observations are made, and until 2030, the B1, A2, and
A1FI scenarios are statistically indistinguishable at 95% confi-
dence. These statistical significance tests rely on important
assumptions and uncertainty estimates (SI). The bottom-right
panel of Fig. 1 shows monthly global-average temperatures (the
‘‘seasonality’’ in this case is caused by the distribution of land
surfaces in the northern versus the southern hemispheres);
visually, there is a clear match with reanalysis and observations,
as well as an increasing trend in 2050 and 2100.

Significant Geographic Variability. Global averages are important
(21), but a complete picture of projected trends and uncertainty
emerges only when the results are analyzed geographically.
Furthermore, stakeholders and end-users require credible as-
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sessments of climate change and extremes at local to regional
scales for adaptation decisions and policy negotiations (7, 8).
Here we compare A1FI-driven CCSM 3.0 (22) model projections
and NCEP Reanalysis (23) observations for 2000–2007, when
both are available, and develop grid-based estimates for model
bias and standard deviation. We use the results to generate
bias-corrected ‘‘most likely’’ projections and corresponding con-
fidence bounds based on three standard deviations at each grid
cell. Grid-based decadal averages are calculated for three time
periods: The current ‘‘2000’’ decade, the mid-century ‘‘2050’’
decade, and the end-century ‘‘2100.’’ The ‘‘2050’’ and ‘‘2100’’
values are subtracted from the ‘‘2000’’ values to show the change.
A1FI temperatures start to significantly depart from B1 and A2
scenarios around 2050 and reconverge with A2 around 2100
(Fig. 1). The variables plotted in Figs. 2 and 3 are based on
decadal average temperatures and Fig. 4 on a measure of the
intensity of heat waves (6), all in degrees Celsius. While the maps
have global coverage, the precision of the numbers are the same
as CCSM 3.0 model outputs (1.4° � 1.4° grid), so the results can
be used for regional analysis; visualizations were interpolated
with commercial GIS software.

Decadal average temperatures from the model and observa-
tions, as well as the bias (details in SI), are shown in top panel
of Fig. 2. While model and observations appear visually similar
in 2000–2007, the geographical variability is significant. Tem-

peratures over land appear to be mostly overpredicted (espe-
cially at high altitudes), with exceptions in higher latitudes, where
the biases are low, and in desert areas, where there is some
underprediction. Oceans are well-predicted due to thermal
inertial effects, except for parts of the Atlantic around the
current ice-edges that are underpredicted. The bottom two
panels show temperature differences in 2050 and 2100 compared
to 2000. The most likely temperature increases in 2050 are high
almost all over the globe; however, the disparity between the
upper and lower bounds is significant. The 2050 upper bound
map looks similar to the 2100 most likely map, while the 2050
lower bound map is covered globally with small negative values.
The geographic variability is large with relatively distinct re-
gional patterns. The upper and lower bound maps in 2050,
therefore, present two contrasting pictures of the globe. The
2100 maps show significant overall warming, even at the lower
bound, while the upper bounds for both 2050 and 2100 show an
increasingly grim state of the world. This is a unique method of
examining trends in global climate prediction.

The geographical variability of temperature differences from
the A1FI-based projections in 2000, 2050, and 2100 are com-
pared with those from B1 and A2 in Fig. 3. Projections from the
three scenarios are indistinguishable even at small significance
levels in 2000, although A1FI appears slightly lower than both B1
and A2 over large portions of the globe. In 2050 and 2100, A1FI

Fig. 1. Global average projections of temperatures and uncertainty. The top panel shows globally-average temperature (°C) projections from CCSM 3.0, based
on A1FI, A2, and B1, along with error bars. The bias and standard deviations are calculated for each projection by comparing NCEP Reanalysis data with model
outputs in 2000–2007, which forms the basis in the generation of the error bars for 2010 to 2100; note that the error bars are based solely on this bias and variance,
but do not take into account the effect of projection lead times. The shaded areas indicate uncertainties caused by five initial-condition ensembles. The bottom
left panel zooms in on 2000–2007. The bottom right panel shows monthly global-average temperatures.
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projections are much higher than B1 for almost all grid cells. The
difference between the A1FI and A2 in 2050 is not statistically
significant on average, but we find significant variability in scattered
regions across the map. However, by 2100, A1FI is visually much
higher than A2, especially in the northern hemisphere. To empha-
size the uncertainty stemming from the geographic variability of the
model, we also perform a comparison between individual ensemble
members of the A1FI scenario (see SI).

Increasing Intensity-Duration-Frequency of Heat Waves. The inten-
sity of heat waves across the world at CCSM 3.0 resolutions are
investigated in Fig. 4. A heat wave here is defined as the mean
annual 3-day warmest nighttime minima event, following pre-
vious researchers (6). The top two panels show that, while the
model-generated and observed severity of heat waves in 2000–
2007 exhibit similar patterns, there is a distinct bias. The
observed heat wave intensity is consistently higher than A1FI
projections in the current decade when global averages are
considered. However, the large geographic variability of the
observed and modeled heat wave intensities, as well as the
significant uncertainties and geographic variability of the model

biases, imply that this may not necessarily be true for all regions.
Heat waves over land masses are nearly all overpredicted, with
exception of the higher latitudes and certain desert regions, while
the oceans are better predicted except in the Atlantic, where they
are underpredicted. The two bottom panels show the projections
for 2050 and 2100. Increased severity of heat waves is observed
in nearly all of the land masses around the globe (except at high
latitudes), as well as most of the low- to mid-latitude oceanic
regions. The increases in heat wave intensity do not necessarily
follow the warming patterns. Thus, the Western part of the
United States show larger temperature increase, but the heat
waves appear to be concentrated in the Midwest and Southeast.
This clear difference in the geographical distribution of heat
waves and simple warming is a critical point of this communi-
cation. We also investigate the duration and frequency of heat
waves (see SI).

Discussion
We analyze NCEP Reanalysis observations and climate model
simulations, including developed A1FI-forced ensembles gener-
ated from the CCSM 3.0 model, to develop bias-corrected

Fig. 2. Grid-based temperature projections with confidence bounds for A1FI. The top panel shows reanalysis and model-simulated annual average temperature
(°C) along with the bias for 2000–2007. The bottom panels show 2050 and 2100 temperature projections from A1FI-forced CCSM 3.0 after bias correction (most
likely maps, left) as well as upper (center) and lower (right) bounds. The numbers can be used to support local to regional scale analyses of climate change and
extreme hydrometeorological stresses or impacts.

Fig. 3. Comparing grid-based A1FI projections with A2 and B1. Temperatures generated for the A1FI scenario in 2000, 2050, and 2100 are subtracted from the
other scenarios: The figures on the left show 2000, during which time the scenarios are not separated. The figures on the right for 2050 and 2100 show the
difference of A1FI with B1 (top) and A2 (bottom).
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projections as well as uncertainty bounds for decadal-averages of
temperature and heat waves. The uncertainty bounds are based
on the differences between the model-simulations and observa-
tions, which are shown to follow a relatively stationary Gaussian
distribution. The confidence bounds based on three standard
deviations are consistently greater than the maximum ensemble
ranges. In addition, these bounds can be larger than the differ-
ences between scenarios. Thus, the projected global-average
temperatures from the different SRES scenarios cannot be
statistically distinguished from each other at 95% confidence
levels until about 2030, and the two more extreme scenarios (A2
and A1FI) cannot be distinguished from each other until the
middle of the 21st century. This remains true even though the
temperature changes are clearly distinguishable when compared
across multiple decades for any one given scenario. However, the
trends in A1FI-forced global-averaged temperatures are signif-
icantly higher from 2050 onwards, until they converge back with
A2 toward the end of the century following the emissions
trajectories. We note that the IPCC SRES scenarios are a suite
of baseline nonpolicy scenarios that are not intended to span the
full range of possible future emissions. A worst-case scenario
could have higher emissions than A1FI, and a scenario including
climate policy could have lower emissions than B1. A strict
interpretation would identify A1FI as the ‘‘highest’’ scenario
reported in IPCC AR4 and B1 as the ‘‘lowest,’’ which is a relative
labeling. Our use of the terms ‘‘worst case’’ and ‘‘best case,’’
which borrowed from labeling (e.g., 24), may need to be inter-
preted accordingly. An examination of the regional variability
based on daily data at 1.4 ° Gaussian grids reveals that the
uncertainty bounds are large enough to make the warming
appear insignificant on the lower bounds until 2050, but very
significant at regional scales. Larger upper bounds imply that
decision-makers need to be prepared for the worst possible
consequences even though the most likely and lower bounds
provide a way to optimize the allocation of potentially limited
resources to manage the adverse effects. An investigation of

decadal-average heat wave intensities at regional scales similarly
reveals a large bias and uncertainty bounds. The globally averaged
intensity of heat waves at decadal scales shows that the observed
intensities are higher than the worst-case model projections in the
current decade, which implies further exacerbation of heat waves
compared to what has been already suggested by previous research-
ers. Future research needs to further validate the insights developed
here through multimodel ensembles. The insights about trends in
temperatures and heat waves, as a function of emissions trajectories,
are expected to remain unaltered. However, the use of multiple
models will likely increase the uncertainties and variability at both
global and regional scales.

Materials and Methods
From the CCSM 3.0 model, we obtained five-member ensembles for IPCC SRES
A2 and B1 and three runs for A1FI. We consider the ensemble median for
visualization where applicable. The model data were provided at T85 resolu-
tion (approximately 1.4 ° � 1.4 ° grid) and NCEP/NCAR Reanalysis data at T62
resolution (approximately 2.5 ° � 2.5 ° grid). We use a bivariate spline (25) to
interpolate the model data onto the reanalysis grid. Bias was computed for the
8-year period from 2000–2007, due to the need for both model and reanalysis
data. The remainder of our analyses use three decades at the beginning,
middle, and end of the 21st century: 2000–2009, 2045–2054, and 2090–2099;
in our figures these are labeled as 2000, 2050, and 2100, respectively. All
figures show decadal averages over each of these periods, in plots as global
average and in maps computed individually at each grid location. For tem-
perature extremes, we adopt a definition of heat waves that focuses on
intensity of the event (6).

All statistics are performed using the software environment R (www.
r-project.org) and the package akima (R package version 0.5–1; http://cran.
r-project.org/web/packages). Maps were produced using commercial GIS soft-
ware ArcGIS 9.3 (www.esri.com/software/arcgis).
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Fig. 4. Intensity of heat waves from A1FI. A heat wave is defined as the mean annual consecutive 3-day warmest nighttime minima event. The top two panels
show intensity, graphically and mapped, from reanalysis data and model outputs for 2000–2007 along with the bias. The bottom panels show 2050 and 2100
heat wave projections from A1FI-forced CCSM 3.0 after bias correction (most likely maps, left) as well as upper (center) and lower (right) bounds. The numbers
can be used to support local to regional scale analyses of climate change and extreme hydrometeorological stresses or impacts.
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